
   

Restrictions SSSP Algorithm 
Graph Weights Name Running Time O(·) Lecture 

General Unweighted BFS |V | + |E| L09 
L11 
L12 
L13 (Today!) 

DAG Any DAG Relaxation |V | + |E|
General Any Bellman-Ford 

Dijkstra 
|V | · |E|

General Non-negative 

Introduction to Algorithms: 6.006 
Massachusetts Institute of Technology 
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 13: Dijkstra’s Algorithm 

Lecture 13: Dijkstra’s Algorithm 

Review 

• Single-Source Shortest Paths on weighted graphs 

• Previously: O(|V | + |E|)-time algorithms for small positive weights or DAGs 

• Last time: Bellman-Ford, O(|V ||E|)-time algorithm for general graphs with negative weights 

• Today: faster for general graphs with non-negative edge weights, i.e., for e ∈ E, w(e) ≥ 0 

|V | log |V | + |E| 

Non-negative Edge Weights 

• Idea! Generalize BFS approach to weighted graphs: 

– Grow a sphere centered at source s 

– Repeatedly explore closer vertices before further ones 

– But how to explore closer vertices if you don’t know distances beforehand? :( 

• Observation 1: If weights non-negative, monotonic distance increase along shortest paths 

– i.e., if vertex u appears on a shortest path from s to v, then δ(s, u) ≤ δ(s, v) 

– Let Vx ⊂ V be the subset of vertices reachable within distance ≤ x from s 

– If v ∈ Vx, then any shortest path from s to v only contains vertices from Vx 

– Perhaps grow Vx one vertex at a time! (but growing for every x is slow if weights large) 

• Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from s 

– Remove edges that go against this order (since cannot participate in shortest paths) 

– May still have cycles if zero-weight edges: repeatedly collapse into single vertices 

– Compute δ(s, v) for each v ∈ V using DAG relaxation in O(|V | + |E|) time 
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Dijkstra’s Algorithm 

• Named for famous Dutch computer scientist Edsger Dijkstra (actually Dÿkstra!) 

• Idea! Relax edges from each vertex in increasing order of distance from source s 

• Idea! Efficiently find next vertex in the order using a data structure 

• Changeable Priority Queue Q on items with keys and unique IDs, supporting operations: 

Q.build(X) initialize Q with items in iterator X 

Q.delete min() remove an item with minimum key 
Q.decrease key(id, k) find stored item with ID id and change key to k 

• Implement by cross-linking a Priority Queue Q0 and a Dictionary D mapping IDs into Q0 

• Assume vertex IDs are integers from 0 to |V | − 1 so can use a direct access array for D 

• For brevity, say item x is the tuple (x.id, x.key) 

• Set d(s, v) = ∞ for all v ∈ V , then set d(s, s) = 0 

• Build changeable priority queue Q with an item (v, d(s, v)) for each vertex v ∈ V 

• While Q not empty, delete an item (u, d(s, u)) from Q that has minimum d(s, u) 

– For vertex v in outgoing adjacencies Adj+(u): 

∗ If d(s, v) > d(s, u) + w(u, v): 
· Relax edge (u, v), i.e., set d(s, v) = d(s, u) + w(u, v) 

· Decrease the key of v in Q to new estimate d(s, v) 

• Run Dijkstra on example 
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Example 
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• Claim: At end of Dijkstra’s algorithm, d(s, v) = δ(s, v) for all v ∈ V 

• Proof: 

– If relaxation sets d(s, v) to δ(s, v), then d(s, v) = δ(s, v) at the end of the algorithm 

∗ Relaxation can only decrease estimates d(s, v) 
∗ Relaxation is safe, i.e., maintains that each d(s, v) is weight of a path to v (or ∞) 

– Suffices to show d(s, v) = δ(s, v) when vertex v is removed from Q 

∗ Proof by induction on first k vertices removed from Q 

∗ Base Case (k = 1): s is first vertex removed from Q, and d(s, s) = 0 = δ(s, s) 

∗ Inductive Step: Assume true for k < k0, consider k0th vertex v0 removed from Q 

∗ Consider some shortest path π from s to v0, with w(π) = δ(s, v0) 

∗ Let (x, y) be the first edge in π where y is not among first k0 − 1 (perhaps y = v0) 
∗ When x was removed from Q, d(s, x) = δ(s, x) by induction, so: 

d(s, y) ≤ δ(s, x) + w(x, y) relaxed edge (x, y) when removed x 

= δ(s, y) subpaths of shortest paths are shortest paths 
≤ δ(s, v 0) non-negative edge weights 

0)≤ d(s, v relaxation is safe 
≤ d(s, y) v 0 is vertex with minimum d(s, v 0) in Q 

∗ So d(s, v0) = δ(s, v0), as desired 
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Running Time 

• Count operations on changeable priority queue Q, assuming it contains n items: 

Operation Time Occurrences in Dijkstra 
Q.build(X) (n = |X|) 
Q.delete min() 

Q.decrease key(id, k) 

Bn 

Mn 

Dn 

1 

|V |
|E| 

• Total running time is O(B|V | + |V | · M|V | + |E| · D|V |) 

• Assume pruned graph to search only vertices reachable from the source, so |V | = O(|E|) 

Priority Queue Q0 Q Operations O(·) Dijkstra O(·) 
n = |V | = O(|E|)on n items build(X) delete min() decrease key(id, k) 

Array n n 1 |V |2 

Binary Heap n log n(a) log n |E| log |V |
Fibonacci Heap n log n(a) 1(a) |E| + |V | log |V | 

• If graph is dense, i.e., |E| = Θ(|V |2), using an Array for Q0 yields O(|V |2) time 

• If graph is sparse, i.e., |E| = Θ(|V |), using a Binary Heap for Q0 yields O(|V | log |V |) time 

• A Fibonacci Heap is theoretically good in all cases, but is not used much in practice 

• We won’t discuss Fibonacci Heaps in 6.006 (see 6.854 or CLRS chapter 19 for details) 

• You should assume Dijkstra runs in O(|E|+|V | log |V |) time when using in theory problems 

Summary: Weighted Single-Source Shortest Paths 

Restrictions SSSP Algorithm 
Graph Weights Name Running Time O(·) 
General Unweighted BFS |V | + |E|
DAG Any DAG Relaxation |V | + |E|
General Non-negative Dijkstra 

Bellman-Ford 
|V | log |V | + |E|

|V | · |E|General Any 

• What about All-Pairs Shortest Paths? 

• Doing a SSSP algorithm |V | times is actually pretty good, since output has size O(|V |2) 

• Can do better than |V | · O(|V | · |E|) for general graphs with negative weights (next time!) 
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