

Restrictions SSSP Algorithm
Graph Weights Name Running Time O(·) Lecture

General Unweighted BFS |V | + |E| L09
L11
L12
L13 (Today!)

DAG Any DAG Relaxation |V | + |E|
General Any Bellman-Ford

Dijkstra
|V | · |E|

General Non-negative

Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 13: Dijkstra’s Algorithm

Lecture 13: Dijkstra’s Algorithm

Review

• Single-Source Shortest Paths on weighted graphs

• Previously: O(|V | + |E|)-time algorithms for small positive weights or DAGs

• Last time: Bellman-Ford, O(|V ||E|)-time algorithm for general graphs with negative weights

• Today: faster for general graphs with non-negative edge weights, i.e., for e ∈ E, w(e) ≥ 0

|V | log |V | + |E|

Non-negative Edge Weights

• Idea! Generalize BFS approach to weighted graphs:

– Grow a sphere centered at source s

– Repeatedly explore closer vertices before further ones

– But how to explore closer vertices if you don’t know distances beforehand? :(

• Observation 1: If weights non-negative, monotonic distance increase along shortest paths

– i.e., if vertex u appears on a shortest path from s to v, then δ(s, u) ≤ δ(s, v)

– Let Vx ⊂ V be the subset of vertices reachable within distance ≤ x from s

– If v ∈ Vx, then any shortest path from s to v only contains vertices from Vx

– Perhaps grow Vx one vertex at a time! (but growing for every x is slow if weights large)

• Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from s

– Remove edges that go against this order (since cannot participate in shortest paths)

– May still have cycles if zero-weight edges: repeatedly collapse into single vertices

– Compute δ(s, v) for each v ∈ V using DAG relaxation in O(|V | + |E|) time

2 Lecture 13: Dijkstra’s Algorithm

Dijkstra’s Algorithm

• Named for famous Dutch computer scientist Edsger Dijkstra (actually Dÿkstra!)

• Idea! Relax edges from each vertex in increasing order of distance from source s

• Idea! Efficiently find next vertex in the order using a data structure

• Changeable Priority Queue Q on items with keys and unique IDs, supporting operations:

Q.build(X) initialize Q with items in iterator X

Q.delete min() remove an item with minimum key
Q.decrease key(id, k) find stored item with ID id and change key to k

• Implement by cross-linking a Priority Queue Q0 and a Dictionary D mapping IDs into Q0

• Assume vertex IDs are integers from 0 to |V | − 1 so can use a direct access array for D

• For brevity, say item x is the tuple (x.id, x.key)

• Set d(s, v) = ∞ for all v ∈ V , then set d(s, s) = 0

• Build changeable priority queue Q with an item (v, d(s, v)) for each vertex v ∈ V

• While Q not empty, delete an item (u, d(s, u)) from Q that has minimum d(s, u)

– For vertex v in outgoing adjacencies Adj+(u):

∗ If d(s, v) > d(s, u) + w(u, v):
· Relax edge (u, v), i.e., set d(s, v) = d(s, u) + w(u, v)

· Decrease the key of v in Q to new estimate d(s, v)

• Run Dijkstra on example

3 Lecture 13: Dijkstra’s Algorithm

Example

Delete
v from Q

s

c

d

a

b

δ(s, v)

s

0

0

Correctness

a

∞

10

7

7

7

d(s, v)

b

∞

∞

11

10

9

9

c

∞

3

3

d 2
G ∞ 10

∞
1 5s

a b

c d

4 75 8

3

2
5

• Claim: At end of Dijkstra’s algorithm, d(s, v) = δ(s, v) for all v ∈ V

• Proof:

– If relaxation sets d(s, v) to δ(s, v), then d(s, v) = δ(s, v) at the end of the algorithm

∗ Relaxation can only decrease estimates d(s, v)
∗ Relaxation is safe, i.e., maintains that each d(s, v) is weight of a path to v (or ∞)

– Suffices to show d(s, v) = δ(s, v) when vertex v is removed from Q

∗ Proof by induction on first k vertices removed from Q

∗ Base Case (k = 1): s is first vertex removed from Q, and d(s, s) = 0 = δ(s, s)

∗ Inductive Step: Assume true for k < k0, consider k0th vertex v0 removed from Q

∗ Consider some shortest path π from s to v0, with w(π) = δ(s, v0)

∗ Let (x, y) be the first edge in π where y is not among first k0 − 1 (perhaps y = v0)
∗ When x was removed from Q, d(s, x) = δ(s, x) by induction, so:

d(s, y) ≤ δ(s, x) + w(x, y) relaxed edge (x, y) when removed x

= δ(s, y) subpaths of shortest paths are shortest paths
≤ δ(s, v 0) non-negative edge weights

0)≤ d(s, v relaxation is safe
≤ d(s, y) v 0 is vertex with minimum d(s, v 0) in Q

∗ So d(s, v0) = δ(s, v0), as desired

4 Lecture 13: Dijkstra’s Algorithm

Running Time

• Count operations on changeable priority queue Q, assuming it contains n items:

Operation Time Occurrences in Dijkstra
Q.build(X) (n = |X|)
Q.delete min()

Q.decrease key(id, k)

Bn

Mn

Dn

1

|V |
|E|

• Total running time is O(B|V | + |V | · M|V | + |E| · D|V |)

• Assume pruned graph to search only vertices reachable from the source, so |V | = O(|E|)

Priority Queue Q0 Q Operations O(·) Dijkstra O(·)
n = |V | = O(|E|)on n items build(X) delete min() decrease key(id, k)

Array n n 1 |V |2

Binary Heap n log n(a) log n |E| log |V |
Fibonacci Heap n log n(a) 1(a) |E| + |V | log |V |

• If graph is dense, i.e., |E| = Θ(|V |2), using an Array for Q0 yields O(|V |2) time

• If graph is sparse, i.e., |E| = Θ(|V |), using a Binary Heap for Q0 yields O(|V | log |V |) time

• A Fibonacci Heap is theoretically good in all cases, but is not used much in practice

• We won’t discuss Fibonacci Heaps in 6.006 (see 6.854 or CLRS chapter 19 for details)

• You should assume Dijkstra runs in O(|E|+|V | log |V |) time when using in theory problems

Summary: Weighted Single-Source Shortest Paths

Restrictions SSSP Algorithm
Graph Weights Name Running Time O(·)
General Unweighted BFS |V | + |E|
DAG Any DAG Relaxation |V | + |E|
General Non-negative Dijkstra

Bellman-Ford
|V | log |V | + |E|

|V | · |E|General Any

• What about All-Pairs Shortest Paths?

• Doing a SSSP algorithm |V | times is actually pretty good, since output has size O(|V |2)

• Can do better than |V | · O(|V | · |E|) for general graphs with negative weights (next time!)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

