Introduction to Algorithms: 6.006
Massachusetts Institute of Technology
Instructors: Erik Demaine, Jason Ku, and Justin Solomon Lecture 13: Dijkstra’s Algorithm

Lecture 13: Dijkstra’s Algorithm

Review
e Single-Source Shortest Paths on weighted graphs
e Previously: O(|V| + |E|)-time algorithms for small positive weights or DAGs
e Last time: Bellman-Ford, O(|V|| E|)-time algorithm for general graphs with negative weights

e Today: faster for general graphs with non-negative edge weights, i.e., fore € F, w(e) > 0

Restrictions SSSP Algorithm

Graph | Weights Name Running Time O(-) | Lecture
General | Unweighted | BFS V| + |E] | LO9

DAG Any DAG Relaxation V| +|E| | L11

General | Any Bellman-Ford V|- |E| | L12

General | Non-negative | Dijkstra [V|log|V|+ |E| | L13 (Today!)

Non-negative Edge Weights
e Idea! Generalize BFS approach to weighted graphs:

— Grow a sphere centered at source s
— Repeatedly explore closer vertices before further ones

— But how to explore closer vertices if you don’t know distances beforehand? : (
e Observation 1: If weights non-negative, monotonic distance increase along shortest paths

- i.e., if vertex u appears on a shortest path from s to v, then d(s, u) < d(s, v)

Let V,, C V be the subset of vertices reachable within distance < z from s

If v € V,, then any shortest path from s to v only contains vertices from V,

— Perhaps grow V,, one vertex at a time! (but growing for every x is slow if weights large)
e Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from s

— Remove edges that go against this order (since cannot participate in shortest paths)
— May still have cycles if zero-weight edges: repeatedly collapse into single vertices
— Compute 0(s,v) for each v € V using DAG relaxation in O(|V'| + | E|) time

2 Lecture 13: Dijkstra’s Algorithm

Dijkstra’s Algorithm

e Named for famous Dutch computer scientist Edsger Dijkstra (actually Dykstra!)

o Idea! Relax edges from each vertex in increasing order of distance from source s
e Idea! Efficiently find next vertex in the order using a data structure

e Changeable Priority Queue () on items with keys and unique IDs, supporting operations:
Q.build(X) initialize () with items in iterator X
Q.delete_min () remove an item with minimum key
Q.decrease_key (id, k) | find stored item with ID id and change key to k

e Implement by cross-linking a Priority Queue (' and a Dictionary D mapping IDs into @)’

e Assume vertex IDs are integers from 0 to || — 1 so can use a direct access array for D

e For brevity, say item x is the tuple (x.id, x.key)

e Setd(s,v) =ooforallv e V,thensetd(s,s) =0
e Build changeable priority queue) with an item (v, d(s, v)) for each vertex v € V
e While () not empty, delete an item (u, d(s,u)) from () that has minimum d(s, u)

— For vertex v in outgoing adjacencies Adj" (u):
« If d(s,v) > d(s,u) +w(u,v):
- Relax edge (u,v), i.e., set d(s,v) = d(s,u) + w(u,v)
- Decrease the key of v in () to new estimate d(s, v)

e Run Dijkstra on example

Lecture 13: Dijkstra’s Algorithm

Example

Delete d(s,v)

v from () ‘a‘b‘c‘d
5 0|oco|o0| 00| 0
c 10 oo | 3 | o0
d 711 5 7
a 7 |10
b 9

Correctness

e Claim: At end of Dijkstra’s algorithm, d(s,v) = §(s,v) forallv € V

e Proof:

— If relaxation sets d(s, v) to §(s, v), then d(s,v) = (s, v) at the end of the algorithm

*

*

Relaxation can only decrease estimates d(s, v)
Relaxation is safe, i.e., maintains that each d(s, v) is weight of a path to v (or co)

— Suffices to show d(s,v) = (s, v) when vertex v is removed from)

*

*

*

Proof by induction on first k vertices removed from ()

Base Case (k = 1): s is first vertex removed from @, and d(s, s) = 0 = §(s, s)
Inductive Step: Assume true for & < £/, consider k’th vertex v’ removed from @)
Consider some shortest path 7 from s to v/, with w(m) = (s, v')

Let (z,y) be the first edge in m where y is not among first £’ — 1 (perhaps y = v’)
When x was removed from @, d(s, z) = (s, x) by induction, so:

d(s,y) <6(s,x) +w(x,y) relaxed edge (z,y) when removed z
=4(s,y) subpaths of shortest paths are shortest paths
< d(s,0) non-negative edge weights
< d(s,v) relaxation is safe
< d(s,y) v’ is vertex with minimum d(s, v) in Q

So d(s,v") = d(s,v"), as desired U

4 Lecture 13: Dijkstra’s Algorithm

Running Time

e Count operations on changeable priority queue (), assuming it contains n items:

Operation ‘ Time ‘ Occurrences in Dijkstra
Q.build(x) (n=|x]|) B, |1
Q.delete_min () M, | |V]

Q.decrease_key (id, k) D,]E]
e Total running time is O(B)y| + |V| - M| + |E| - D)

e Assume pruned graph to search only vertices reachable from the source, so |V| = O(|E|)

Priority Queue)’ () Operations O(+) Dijkstra O(-)

on n items build(X) | delete_min() | decrease_key(id, k) || n = |V| = O(|E|)
Array n n 1 V|2

Binary Heap n log n(q) logn |E|log |V|
Fibonacci Heap n log 1(a) L) |E| + |V]log|V]

If graph is dense, i.e., |E| = ©(|V|?), using an Array for @’ yields O(|V|?) time
E|=0(V

If graph is sparse, i.c.,), using a Binary Heap for @)’ yields O(|V'|log |V'|) time

A Fibonacci Heap is theoretically good in all cases, but is not used much in practice

We won’t discuss Fibonacci Heaps in 6.006 (see 6.854 or CLRS chapter 19 for details)

You should assume Dijkstra runs in O(|E|+|V| log |V|) time when using in theory problems

Summary: Weighted Single-Source Shortest Paths

Restrictions SSSP Algorithm

Graph | Weights Name Running Time O(-)
General | Unweighted | BFS V| + |E|
DAG Any DAG Relaxation V| + |E]
General | Non-negative | Dijkstra |V|log|V|+ |E|
General | Any Bellman-Ford V|- |E|

e What about All-Pairs Shortest Paths?
e Doing a SSSP algorithm |V'| times is actually pretty good, since output has size O(|V|?)

e Can do better than |V'| - O(|V| - | E||) for general graphs with negative weights (next time!)

MIT OpenCourseWare
https://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	cover.pdf
	Blank Page

