Lecture 13: Dijkstra's Algorithm

Review

- Single-Source Shortest Paths on weighted graphs
- Previously: O(|V| + |E|)-time algorithms for small positive weights or DAGs
- Last time: Bellman-Ford, O(|V||E|)-time algorithm for general graphs with negative weights
- Today: faster for general graphs with non-negative edge weights, i.e., for $e \in E$, $w(e) \ge 0$

Restrictions		SSSP Algorithm			
Graph	Weights	Name	Running Time $O(\cdot)$	Lecture	
General	Unweighted	BFS	V + E	L09	
DAG	Any	DAG Relaxation	V + E	L11	
General	Any	Bellman-Ford	$ V \cdot E $	L12	
General	Non-negative	Dijkstra	$ V \log V + E $	L13 (Today!)	

Non-negative Edge Weights

- Idea! Generalize BFS approach to weighted graphs:
 - Grow a sphere centered at source s
 - Repeatedly explore closer vertices before further ones
 - But how to explore closer vertices if you don't know distances beforehand? : (
- Observation 1: If weights non-negative, monotonic distance increase along shortest paths
 - i.e., if vertex u appears on a shortest path from s to v, then $\delta(s, u) \leq \delta(s, v)$
 - Let $V_x \subset V$ be the subset of vertices reachable within distance $\leq x$ from s
 - If $v \in V_x$, then any shortest path from s to v only contains vertices from V_x
 - Perhaps grow V_x one vertex at a time! (but growing for every x is slow if weights large)
- Observation 2: Can solve SSSP fast if given order of vertices in increasing distance from s
 - Remove edges that go against this order (since cannot participate in shortest paths)
 - May still have cycles if zero-weight edges: repeatedly collapse into single vertices
 - Compute $\delta(s, v)$ for each $v \in V$ using DAG relaxation in O(|V| + |E|) time

Dijkstra's Algorithm

• Named for famous Dutch computer scientist Edsger Dijkstra (actually Dÿkstra!)

11 August 1982 prof.dr. Edsger W. Dykstra Burroughs Research Fellow

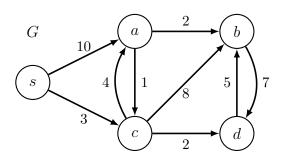
- Idea! Relax edges from each vertex in increasing order of distance from source s
- Idea! Efficiently find next vertex in the order using a data structure
- Changeable Priority Queue Q on items with keys and unique IDs, supporting operations:

Q.build(X)	initialize Q with items in iterator X
Q.delete_min()	remove an item with minimum key
Q.decrease_key(id, k)	find stored item with ID id and change key to k

- Implement by cross-linking a Priority Queue Q' and a Dictionary D mapping IDs into Q'
- Assume vertex IDs are integers from 0 to |V| 1 so can use a direct access array for D
- For brevity, say item x is the tuple (x.id, x.key)
- Set $d(s, v) = \infty$ for all $v \in V$, then set d(s, s) = 0
- Build changeable priority queue Q with an item (v, d(s, v)) for each vertex $v \in V$
- While Q not empty, delete an item (u, d(s, u)) from Q that has minimum d(s, u)
 - For vertex v in outgoing adjacencies $\operatorname{Adj}^+(u)$:
 - * If d(s, v) > d(s, u) + w(u, v):
 - · Relax edge (u, v), i.e., set d(s, v) = d(s, u) + w(u, v)
 - · Decrease the key of v in Q to new estimate d(s, v)
- Run Dijkstra on example

Example

Delete	d(s, v)				
v from Q	s	a	b	c	d
s	0	∞	∞	∞	∞
С		10	∞	3	∞
d		7	11		5
a		7	10		
b			9		
$\delta(s, v)$	0	7	9	3	5



Correctness

- Claim: At end of Dijkstra's algorithm, $d(s, v) = \delta(s, v)$ for all $v \in V$
- Proof:
 - If relaxation sets d(s, v) to $\delta(s, v)$, then $d(s, v) = \delta(s, v)$ at the end of the algorithm
 - * Relaxation can only decrease estimates d(s, v)
 - * Relaxation is safe, i.e., maintains that each d(s, v) is weight of a path to v (or ∞)
 - Suffices to show $d(s, v) = \delta(s, v)$ when vertex v is removed from Q
 - * Proof by induction on first k vertices removed from Q
 - * Base Case (k = 1): s is first vertex removed from Q, and $d(s, s) = 0 = \delta(s, s)$
 - * Inductive Step: Assume true for k < k', consider k'th vertex v' removed from Q
 - * Consider some shortest path π from s to v', with $w(\pi) = \delta(s, v')$
 - * Let (x, y) be the first edge in π where y is not among first k' 1 (perhaps y = v')
 - * When x was removed from Q, $d(s, x) = \delta(s, x)$ by induction, so:

$d(s,y) \le \delta(s,x) + w(x,y)$	relaxed edge (x, y) when removed x
$=\delta(s,y)$	subpaths of shortest paths are shortest paths
$\leq \delta(s, v')$	non-negative edge weights
$\leq d(s, v')$	relaxation is safe
$\leq d(s,y)$	v' is vertex with minimum $d(s, v')$ in Q

* So $d(s, v') = \delta(s, v')$, as desired

Running Time

• Count operations on changeable priority queue Q, assuming it contains n items:

Operation	Time	Occurrences in Dijkstra
Q.build(X) $(n = \mathbf{X})$	B_n	1
Q.delete_min()	M_n	
Q.decrease_key(id, k)	D_n	E

- Total running time is $O(B_{|V|} + |V| \cdot M_{|V|} + |E| \cdot D_{|V|})$
- Assume pruned graph to search only vertices reachable from the source, so |V| = O(|E|)

Priority Queue Q'	Q Operations $O(\cdot)$			Dijkstra $O(\cdot)$
on n items	build(X)	<pre>delete_min()</pre>	<pre>decrease_key(id, k)</pre>	n = V = O(E)
Array	n	n	1	$ V ^2$
Binary Heap	n	$\log n_{(a)}$	$\log n$	$ E \log V $
Fibonacci Heap	n	$\log n_{(a)}$	$1_{(a)}$	$ E + V \log V $

- If graph is **dense**, i.e., $|E| = \Theta(|V|^2)$, using an Array for Q' yields $O(|V|^2)$ time
- If graph is sparse, i.e., $|E| = \Theta(|V|)$, using a Binary Heap for Q' yields $O(|V| \log |V|)$ time
- A Fibonacci Heap is theoretically good in all cases, but is not used much in practice
- We won't discuss Fibonacci Heaps in 6.006 (see 6.854 or CLRS chapter 19 for details)
- You should assume Dijkstra runs in $O(|E| + |V| \log |V|)$ time when using in theory problems

Summary: Weighted Single-Source Shortest Paths

Restrictions		SSSP Algorithm		
Graph	Weights	Name	Running Time $O(\cdot)$	
General	Unweighted	BFS	V + E	
DAG	Any	DAG Relaxation	V + E	
General	Non-negative	Dijkstra	$ V \log V + E $	
General	Any	Bellman-Ford	$ V \cdot E $	

- What about All-Pairs Shortest Paths?
- Doing a SSSP algorithm |V| times is actually pretty good, since output has size $O(|V|^2)$
- Can do better than $|V| \cdot O(|V| \cdot |E|)$ for general graphs with negative weights (next time!)

MIT OpenCourseWare <u>https://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2020

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>