跳转至

8 The pn Junction Diode

8.1 The pn Junction Current

image-20240707183651136

注入到n区的空穴,为n区中的少数载流子

注入到p区的电子,为p区的少数载流子

8.1.2 Ideal Current–Voltage Relationship

  1. The abrupt depletion layer approximation applies. The space charge regions have abrupt boundaries, and the semiconductor is neutral outside of the depletion region.
  2. The Maxwell–Boltzmann approximation applies to carrier statistics.
  3. The concepts of low injection and complete ionization apply.
    • The total current is a constant throughout the entire pn structure.
  4. The individual electron and hole currents are continuous functions through the pn structure.
  5. The individual electron and hole currents are constant throughout the depletion region.

image-20240719152745621

8.1.3 Boundary Conditions

\[ V_{bi}=V_t\ln(\frac{N_aN_d}{n_i^2}) \]

n区中:

\[ n_{n0}\approx N_d \]

p区中:

\[ n_{p0}\approx\frac{n_i^2}{N_a} \]
\[ n_{p0}=n_{n0}\exp(\frac{-eV_{bi}}{kT}) \]

image-20240720114204721

\[ n_p=n_{n0}\exp(\frac{-e(V_{bi}-V_a)}{kT})=n_{n0}\exp(\frac{-eV_{bi}}{kT})\exp(\frac{eV_a}{kT}) \]
\[ n_p=n_{p0}\exp(\frac{eV_a}{kT}) \]

同理:

$$ p_n=p_{n0}\exp(\frac{eV_a}{kT}) $$ image-20240720163102013

8.1.4 Minority Carrier Distribution

\[ D_p\frac{\partial^2(\delta p_n)}{\partial x^2}-\mu_pE\frac{\partial (\delta p_n)}{\partial x}+g'-\frac{\delta p_n}{\tau_{p0}}=\frac{\partial(\delta p_n)}{\partial t} \]
  • 一级近似,电中性区p区与n区电场为0
  • \(x>x_n\)区域,\(E=0, g'=0\)
  • pn结处于稳态,\(\partial p/\partial t=0\)
\[ \begin{align*} D_p\frac{\partial^2(\delta p)}{\partial x^2}-\frac{\partial p}{\tau_{p0}}&=0\\ \frac{d^2(\delta p_n)}{d x^2}-\frac{\delta p_n}{L_p^2}&=0\quad (x>x_n)\\ \small{L_p^2=D_p\tau_{p0}} \end{align*} \]
\[ \begin{align*} \frac{d^2(\delta n_p)}{d x^2}-\frac{\delta n_p}{L_n^2}&=0\quad (x<-x_p)\\ \small{L_n^2=D_n\tau_{n0}} \end{align*} \]

boundary condition:

\[ \begin{align*} p_n(x_n)&=p_{n0}\exp(\frac{eV_a}{kT})\\ n_p(-x_p)&=n_{p0}\exp(\frac{eV_a}{kT})\\ p_n(x\rightarrow +\infin)&=p_{n0}\\ p_n(x\rightarrow -\infin)&=n_{p0}\\ \end{align*} \]

假设,\(W_n>>L_p\)\(W_p>>L_n\)

\[ \delta p_n(x)=p_n(x)-p_{n0}=p_{n0}\left[ \exp(\frac{eV_a}{kT})-1 \right]\exp(\frac{x_n-x}{L_p}) \]
\[ \delta n_p(x)=n_p(x)-n_{p0}=n_{p0}\left[ \exp(\frac{eV_a}{kT})-1 \right]\exp(\frac{x_p+x}{L_n}) \]

8.1.5 Ideal pn Junction Current

image-20240720175801920

image-20240722124032794

\[ \begin{align*} J_p(x_n)&=-eD_p\left.\frac{d(\delta p_n(x))}{dx}\right|_{x=x_n}\\ &=\frac{eD_pp_{n0}}{L_p}\left[ \exp(\frac{eV_a}{kT})-1 \right] \end{align*} \]

同理:

\[ J_n{(-x_p)}=\frac{eD_nn_{p0}}{L_n}\left[ \exp(\frac{eV_a}{kT})-1 \right] \]
\[ J=J_p(x_n)+J_n(-x_p)=\left[ \frac{eD_pp_{n0}}{L_p}+\frac{eD_nn_{p0}}{L_n} \right]\left[ \exp(\frac{eV_a}{kT})-1 \right] \]
  • \(J_s=\left[ \frac{eD_pp_{n0}}{L_p}+\frac{eD_nn_{p0}}{L_n} \right]\)
\[ J=J_s\left[ \exp(\frac{eV_a}{kT})-1 \right] \]

image-20240722135846878

\[ J_p(x)=\frac{eD_pp_{n0}}{L_p}\left[ \exp(\frac{eV_a}{kT})-1 \right]\exp(\frac{x_n-x}{L_p})\quad(x\ge x_n) \]
\[ J_n{(x)}=\frac{eD_nn_{p0}}{L_n}\left[ \exp(\frac{eV_a}{kT})-1 \right]\exp(\frac{x_p+x}{L_n})\quad(x\le -x_p) \]

image-20240722140414854

8.1.7 Temperature Effects

对于Si pn结而言,温度每升高10摄氏度,理想反向饱和电流密度大小升高4倍;正向电流不是很明显

8.1.8 The “Short” Diode

image-20240722141325447

\[ \begin{align*} \frac{d^2(\delta n_p)}{d x^2}-\frac{\delta n_p}{L_n^2}&=0\quad (x<-x_p)\\ \small{L_n^2=D_n\tau_{n0}} \end{align*} \]
\[ \text{boundary condition 1: }p_n(x_n)=p_{n0}\exp(\frac{eV_a}{kT}) \]

假设:

  • \(x=(x_n+W_n)\)处有一个欧姆接触,该处的过剩少子浓度为0
\[ \text{boundary condition 2: }p_n(x=x_n+W_n)=p_{n0} \]
\[ \delta p_n(x)=p_{n0}\left[ \exp(\frac{eV_a}{kT}-1) \right]\frac{\sinh\left[(x_n+W_n-x)/L_p\right]}{\sinh(W_n/L_p)}\approx p_{n0}\left[ \exp(\frac{eV_a}{kT}-1) \right]\left( \frac{x_n+W_n-x}{W_n} \right) \]
\[ J_p=\frac{eD_pp_{n0}}{W_n}\left[ \exp(\frac{eV_a}{kT}-1) \right] \]
  • \(W_n<<L_p\) 因此扩散电流必读远大于长二极管的扩散电流密度
  • n区内勺子的浓度近似为距离的线性函数,因此少子的扩散电流密度为常量,少子内不存在复合过程

8.2 Generation-Recombination Currents and High-Injection Levels

the Shockley– Read–Hall recombination theory

\[ R=\frac{C_nC_pN_t(np-n_i^2)}{C_n(n+n')+C_P(p+p')} \]

8.2.1 Reverse Biased Generation Current

在空间电荷区,\(n\approx p\approx 0\)

\[ R=\frac{-C_nC_pN_tn_i^2}{C_nn'+C_pp'} \]
  • 为负,电子与空穴一旦产生,就被扫出空间电荷区