Devices
Bipolar Transistors
MOS Metal–Oxide–Semiconductor
金属-绝缘体-半导体
Depletion Layer Thickness
同单边pn结:
- 表面处的Fermi Level远在本征fermi level 之上
- threshold inversion point 表面出的电子浓度等于体内的空穴浓度,此时所加的电压为:threshold voltage
空间电荷区最大宽度\(x_{dT}\)
Surface Charge Density
in the conduction band
for a p-type
- \(\Delta \phi_s\) is the surface potential greater than \(2\phi_{fp}\)
- \(n_{st}\) is the surface charge density at the threshold inversion point.
Figure 10.12 shows the electron inversion charge density as a function of surface potential for the case when the threshold inversion charge density is \(n_{st}=10^{16}cm^{-3}\). We may note that the inversion charge density increases by a factor of 10 with a 60-mV increase in surface potential. As discussed previously, the electron inversion charge density increases rapidly with small increases in surface potential, which means that the space charge width essentially reaches a maximum value.
Work Function Differences
- \(\phi_m\) metal work function - 金属中的电子从金属内部移动到真空所需要的最小能量
- \(\chi\) the electron affinity - 电子从导带底部移到真空所需要的最小能量
- \(\phi_m'\) the potential required to inject an electron from metal into the conduction band of the oxide
- \(\chi'\) modified electron affinity
- \(V_{ox0}\) the potential drop across the oxide for zero applied gate voltage
- \(\phi_{s0}\) the surface potential
degenerately doped(重掺杂)
Flat-Band Voltage
there is no band bending in the semiconductor and, as a result, zero net space charge in this region.
平带情况下\(\phi_s=0\)
Threshold Voltage
在阈值点有\(\phi_s=2\phi_{fp}\)
- \(t_{ox}\)栅氧化层厚度
理想C-V特性
堆积 accumulation mode
耗尽 depletion mode
\(C_{ox}=\epsilon_{ox}/t_{ox}\),\(C'_{SD}=\epsilon_s/x_d\)
反型 Inversion Mode
Frequency Effect
The Basic MOSFET Operation
Current–Voltage Relationship—Concepts
(a):
- Drain极,漏到衬底的pn极是反的,所以漏电流为0,the drain current = 0
(b):
- 电子反型层产生,反型层中的电子从源端流向正的漏端。
- 理想情况下:没有电流从氧化层向Gate流过
- 对于较小的\(V_{DS}\),沟道有电阻特性
\(g_d\)为\(V_{DS}\rightarrow 0\)时的沟道电导
- \(\mu_n\)为反型层中的电子迁移率
- \(\abs{Q_n'}\)单位面积的反型层电荷数量
(a): \(V_{DS}\)较小
(b): \(V_{DS}\)增大,漏端附近的氧化层压降减小,漏端附近的反型层电荷密度减小,电导减小,
(c): \(V_{DS}\)增大到漏端的氧化层压降等于\(V_T\)时,漏端的反型电荷密度为0。当电荷为0,电子被注入空间电荷区,并被扫向漏端
非饱和区:\(V_{GS}>V_T\), \(0<V_{DS}<V_{DS}(sat)\)
饱和区:\(V_{DS}>V_{DS}(sat)\)
对于p型而言:
\(V_{SG}>V_T\), \(0<V_{SD}<V_{SD}(sat)\)
\(V_{DS}>V_{DS}(sat)\)
跨导 Transconductance
\(g_m\)晶体管增益
非饱和区,跨导随\(V_{DS}\)线性变化,与\(V_{GS}\)无关
饱和区:
衬底偏置效应 Substrate Bias Effects
- \(V_{SB}=0\)和原先一样,\(\phi_s=2\phi_{fp}\)
- \(V_{SB}>0\),\(\phi_s=2\phi_{fp}+V_{SB}\)
Additional Concept
1 Nonideal Effects
1.1 Subthreshold Conduction
亚阈值电导
\(V_{GS}\le V_T\)时,漏电流称为亚阈值电流 subthreshold current
11.2中情况:weak inversion
1.2 Channel Length Modulation
1.3 Mobility Variation
- 迁移率随着栅压而发生改变
- 载流子接近饱和速度
JFET MESFET The Junction Field-Effect Transistor
Basic pn JFET Operation
Basic MESFET Operation
The Device Characteristic
阈值点:\(h=a\),\(\text{p}^+\text{n}\)结的总电势称为内建夹断电压,\(V_{p0}\)
\(V_{p0}\)不是阈值栅源电压,形成沟道夹断栅源电压为夹断电压\(V_p\)