跳转至

Devices

Bipolar Transistors

image-20240722170117450

image-20240722170021148

MOS Metal–Oxide–Semiconductor

金属-绝缘体-半导体

image-20240722171500034

image-20240723112345394

image-20240723112529609

Depletion Layer Thickness

\[ \phi_{fp}=V_t\ln(\frac{N_a}{n_i}) \]

image-20240723112719837

同单边pn结:

\[ x_d=\left( \frac{2\epsilon_s\phi_s}{eN_a} \right)^{1/2} \]

image-20240723112916581

  • 表面处的Fermi Level远在本征fermi level 之上
  • threshold inversion point 表面出的电子浓度等于体内的空穴浓度,此时所加的电压为:threshold voltage

空间电荷区最大宽度\(x_{dT}\)

\[ x_{dT}=\left( \frac{4\epsilon_s\phi_{fp}}{eN_a} \right)^{1/2} \]

Surface Charge Density

in the conduction band

\[ n=n_i\exp(\frac{E_F-E_{Fi}}{kT}) \]

for a p-type

\[ n_s=n_i\exp(\frac{\phi_{fp}+\Delta\phi_s}{V_t}) \]
  • \(\Delta \phi_s\) is the surface potential greater than \(2\phi_{fp}\)
\[ \begin{align*} n_{st}&=n_i\exp{\frac{\phi_{fp}}{V_t}}\\ n_s&=n_{st}\exp(\frac{\Delta\phi_s}{V_t}) \end{align*} \]
  • \(n_{st}\) is the surface charge density at the threshold inversion point.

image-20240723114306567

Figure 10.12 shows the electron inversion charge density as a function of surface potential for the case when the threshold inversion charge density is \(n_{st}=10^{16}cm^{-3}\). We may note that the inversion charge density increases by a factor of 10 with a 60-mV increase in surface potential. As discussed previously, the electron inversion charge density increases rapidly with small increases in surface potential, which means that the space charge width essentially reaches a maximum value.

Work Function Differences

image-20240723114631850

  • \(\phi_m\) metal work function - 金属中的电子从金属内部移动到真空所需要的最小能量
  • \(\chi\) the electron affinity - 电子从导带底部移到真空所需要的最小能量
  • \(\phi_m'\) the potential required to inject an electron from metal into the conduction band of the oxide
  • \(\chi'\) modified electron affinity
  • \(V_{ox0}\) the potential drop across the oxide for zero applied gate voltage
  • \(\phi_{s0}\) the surface potential
\[ \phi_m'+V_{ox0}=\chi'+\frac{E_g}{2e}-\phi_{s0}+\phi_{fp} \]
\[ V_{ox0}+\phi_{s0}=-\left[ \phi_m'-(\chi'+\frac{E_g}{2e}+\phi_{fp}) \right] \]
\[ \phi_{ms}=\left[ \phi_m'-(\chi'+\frac{E_g}{2e}+\phi_{fp}) \right] \]

degenerately doped(重掺杂)

image-20240723121227055

\[ n^+:\quad\phi_{ms}=-(\frac{E_g}{2e}+\phi_{fp}) \]
\[ p^+:\quad\phi_{ms}= (\frac{E_g}{2e}-\phi_{fp}) \]
\[ \phi_{ms}=\phi_m'-(\chi'+\frac{E_g}{2e}-\phi_{fn}) \]

image-20240723122158697

Flat-Band Voltage

there is no band bending in the semiconductor and, as a result, zero net space charge in this region.

image-20240723123627406

\[ V_G=\Delta V_{ox}+\Delta \phi_s=(V_{ox}-V_{ox0})+(\phi_s-\phi_{s0}) V_G=V_{ox}+\phi_s+\phi_{ms} \]

image-20240723123419768

\[ Q_m'+Q_{ss}'=0 \]
\[ V_{ox}=\frac{Q_m'}{C_{ox}}=\frac{-Q_{ss}'}{C_{ox}} \]

平带情况下\(\phi_s=0\)

\[ V_G=V_{FB}=\phi_{ms}-\frac{Q_{ss}'}{C_{ox}} \]

Threshold Voltage

\[ Q_{mT}'+Q_{ss}'=\abs{Q'_{SD}(max)}=eN_ax_{dT} \]

image-20240723124207556

image-20240723125301356

\[ V_G=\Delta V_{ox}+\Delta\phi_s=V_{ox}+\phi_s+\phi_{ms} \]

在阈值点有\(\phi_s=2\phi_{fp}\)

\[ V_{TN}=V_{oxT}+2\phi_{fp}+\phi_{ms} \]
\[ V_{TN}=V_{oxT}+2\phi_{fp}+\phi_{ms} \]
\[ \begin{align*} V_{oxT}&=\frac{Q'_{mT}}{C_{ox}}\\ &=\frac1{C_{ox}}(\abs{Q'_{SD}(max)}-Q_{ss}')\\ &=(\abs{Q'_{SD}(max)}-Q_{ss}')(\frac{t_{ox}}{\epsilon_{ox}}) \end{align*} \]
  • \(t_{ox}\)栅氧化层厚度
\[ V_{TN}=(\abs{Q'_{SD}(max)}-Q_{ss}')(\frac{t_{ox}}{\epsilon_{ox}})+\phi_{ms}+2\phi_{fp} \]

image-20240723163826428

理想C-V特性

堆积 accumulation mode

\[ C'(acc)=C_{ox}=\frac{\epsilon_{ox}}{t_{ox}} \]

image-20240723130910693

耗尽 depletion mode

image-20240723131118462

\[ \frac1{C'(\text{depl})}=\frac1{C_{ox}}+\frac1{C'_{SD}} \]

\(C_{ox}=\epsilon_{ox}/t_{ox}\)\(C'_{SD}=\epsilon_s/x_d\)

\[ C'(\text{depl})=\frac{\epsilon_{ox}}{t_{ox}+\left( \frac{\epsilon_{ox}}{\epsilon_s} \right)x_d} \]

反型 Inversion Mode

image-20240723132441288

\[ C'(\text{inv})=C_{ox}=\frac{\epsilon_{ox}}{t_{ox}} \]
\[ C'_{FB}=\frac{\epsilon_{ox}}{t_{ox}} + \left( \frac{\epsilon_{ox}}{\epsilon_s} \right) \sqrt{\left( \frac{kT}{e} \right) \left( \frac{\epsilon_s}{eN_a} \right)} \]

image-20240723132716258image-20240723133531819

Frequency Effect

image-20240723133733108image-20240723133627548

The Basic MOSFET Operation

image-20240723140231662image-20240723140249518

image-20240723140921186image-20240723140941437

Current–Voltage Relationship—Concepts

image-20240723141042531

(a):

  • Drain极,漏到衬底的pn极是反的,所以漏电流为0,the drain current = 0

(b):

  • 电子反型层产生,反型层中的电子从源端流向正的漏端。
  • 理想情况下:没有电流从氧化层向Gate流过
  • 对于较小的\(V_{DS}\),沟道有电阻特性
\[ I_D=g_dV_{DS} \]

\(g_d\)\(V_{DS}\rightarrow 0\)时的沟道电导

\[ g_d=\frac{W}{L}\cdot \mu_n\abs{Q_n'} \]
  • \(\mu_n\)为反型层中的电子迁移率
  • \(\abs{Q_n'}\)单位面积的反型层电荷数量

image-20240723142600661

image-20240723143155102image-20240723143210276image-20240723143225139image-20240723143245145image-20240723143302679

(a): \(V_{DS}\)较小

(b): \(V_{DS}\)增大,漏端附近的氧化层压降减小,漏端附近的反型层电荷密度减小,电导减小,

(c): \(V_{DS}\)增大到漏端的氧化层压降等于\(V_T\)时,漏端的反型电荷密度为0。当电荷为0,电子被注入空间电荷区,并被扫向漏端

\[ V_{DSsat}=V_{GS}-V_T \]

image-20240723144959520

image-20240723151146032image-20240723151200316

非饱和区:\(V_{GS}>V_T\), \(0<V_{DS}<V_{DS}(sat)\)

\[ I_D=\frac{W\mu_nC_{ox}}{2L}[2(V_{GS}-V_T)V_{DS}-V_{DS}^2] \]

饱和区:\(V_{DS}>V_{DS}(sat)\)

\[ I_D=\frac{W\mu_nC_{ox}}{2L}(V_{GS}-V_T)^2 \]

对于p型而言:

\(V_{SG}>V_T\), \(0<V_{SD}<V_{SD}(sat)\)

\[ I_D=\frac{W\mu_pC_{ox}}{2L}[2(V_{SG}+V_T)V_{SD}-V_{SD}^2] \]

\(V_{DS}>V_{DS}(sat)\)

\[ I_D=\frac{W\mu_pC_{ox}}{2L}(V_{SG}+V_T)^2 \]

image-20240723160810666

跨导 Transconductance

\[ g_m=\frac{\partial I_D}{\partial V_{GS}} \]

\(g_m\)晶体管增益

\[ g_{mL}=\frac{\partial I_D}{\partial V_{GS}}=\frac{W\mu_nC_{ox}}{L}\cdot V_{DS} \]

非饱和区,跨导随\(V_{DS}\)线性变化,与\(V_{GS}\)无关

饱和区:

\[ g_{ms}=\frac{\partial I_D(sat)}{\partial V_{GS}}=\frac{W\mu_nC_{ox}}{L}(V_{GS}-V_T) \]

衬底偏置效应 Substrate Bias Effects

image-20240723162227621

  • \(V_{SB}=0\)和原先一样,\(\phi_s=2\phi_{fp}\)
  • \(V_{SB}>0\)\(\phi_s=2\phi_{fp}+V_{SB}\)

Additional Concept

1 Nonideal Effects

1.1 Subthreshold Conduction

亚阈值电导

\(V_{GS}\le V_T\)时,漏电流称为亚阈值电流 subthreshold current

image-20240723172013517

11.2中情况:weak inversion

image-20240723172151284

\[ I_D(sub)\propto [\exp(\frac{eV_{GS}}{kT})]\cdot[1-\exp(\frac{-eV_{DS}}{kT})] \]

1.2 Channel Length Modulation

image-20240723173449643

\[ x_p=\sqrt{\frac{2\epsilon_s\phi_{fp}}{eN_a}} \]
\[ x_p=\sqrt{\frac{2\epsilon_s}{eN_a}(\phi_{fp}+V_{DS})} \]
\[ \Delta L=\sqrt{\frac{2\epsilon_s}{eN_a}}\left(\sqrt{(\phi_{fp}+V_{DS}(sat)+\Delta V_{DS})}-\sqrt{\phi_{fp}+V_{DS}(sat)}\right) \]
\[ I_D'=\left(\frac{L}{L-\Delta L}\right)I_D \]

image-20240723175042951

1.3 Mobility Variation

  • 迁移率随着栅压而发生改变
  • 载流子接近饱和速度
\[ E_\text{eff}=\frac1{\epsilon_s}\left( \abs{Q'_{SD}(max)}+\frac1{2}Q'_n \right) \]

JFET MESFET The Junction Field-Effect Transistor

Basic pn JFET Operation

image-20240725132529952

image-20240725134500056

image-20240725135214311

image-20240725135308400

Basic MESFET Operation

image-20240725135350856

image-20240725135523064

image-20240725135534617

The Device Characteristic

image-20240725143043242

image-20240725143651291

\[ h=\sqrt{\frac{2\epsilon_s(V_{bi}-V_{GS})}{eN_d}} \]

阈值点:\(h=a\)\(\text{p}^+\text{n}\)结的总电势称为内建夹断电压\(V_{p0}\)

\[ a=\sqrt{\frac{2\epsilon_sV_{p0}}{eN_d}} \]
\[ V_{p0}=\frac{ea^2N_d}{2\epsilon_s} \]

\(V_{p0}\)不是阈值栅源电压,形成沟道夹断栅源电压为夹断电压\(V_p\)

\[ V_{bi}-V_p=V_{p0}\text{ 或 }V_p=V_{bi}-V_{p0} \]